Blockchain and other distributed ledgers VNO-NCW | 9 October 2018

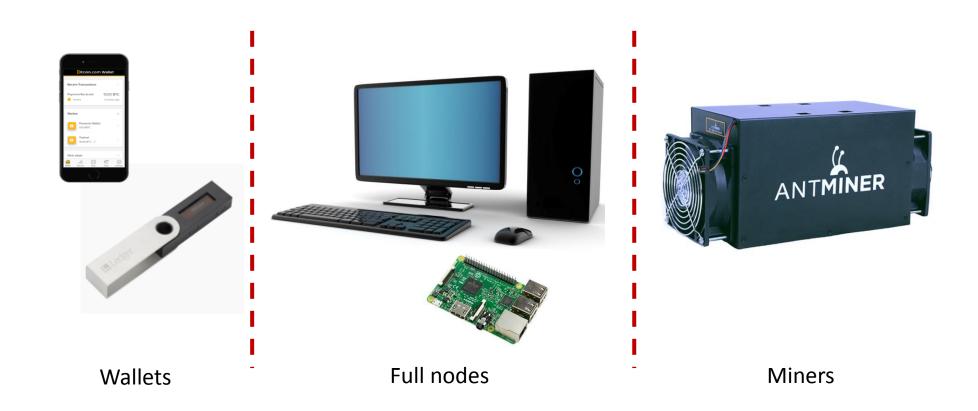
prof.dr. Eddy Vaassen RA

Tilburg University | Erasmus University Rotterdam | BDO | Jheronimus Academy of Data Science

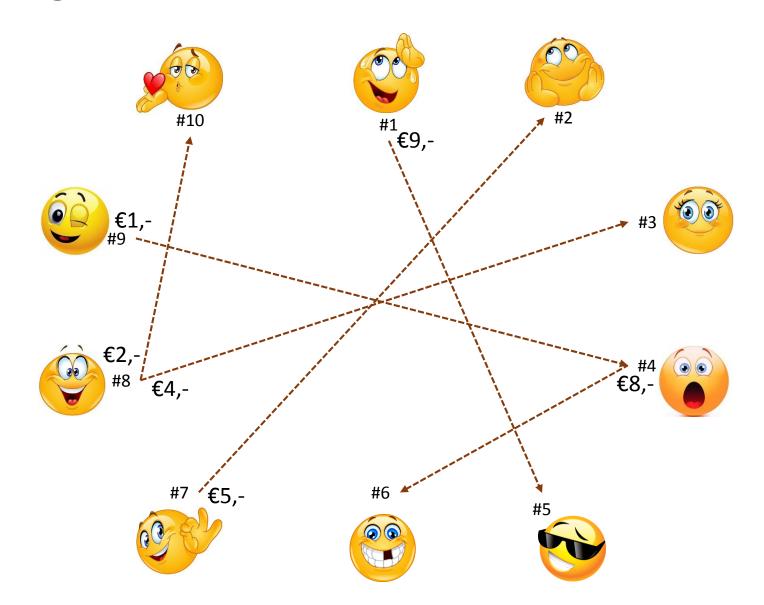
Program

- Blockchain: the technology underlying cryptocurrencies
- Other distributed ledgers
- Use Cases beyond cryptocurrencies

Blockchain


- Blockchain technology is the technology underlying the Bitcoin, Ether, Bitcoin Cash, and other (over 3000) cryptocurrencies
- A blockchain is a distributed database that contains sequentially interlinked ('chained') clusters of transactions ('blocks') with tokens that follow the rules of a specific trust protocol
- A transaction can only be recorded in the blockchain if it has been validated by a majority of the nodes that participate in the network of that blockchain
- Once a transaction is recorded in the blockchain it cannot be removed or altered
- There is not just one blockchain, each cryptocurrency has its own blockchain or its own part of a certain blockchain
- A blockchain is not a substitute for information systems such as ERP, CRM, SCM, or BI; it complements information systems:
 - to enhance reliability
 - to safeguard assets
 - to enforce compliance with applicable laws and regulations
 - to make interactions between members of ecosystems more efficient and effective

The language of blockchain


- Hashing
- Public and private keys
- Digital signatures
- Distributed ledgers
- Mining
- Nodes
- Smart contracts
- Proof-of-work
- Trust protocol
- Peer-to-peer network
- Open source protocol
- Shared single-source-of-truth
- Tokenization
- Oracles

Bitcoin wallets, full nodes, and miners

- Wallets just store bitcoins
- Full nodes verify and relay transactions and blocks, and store bitcoins
- Miners verify and validate transactions, create blocks, and store bitcoins

Broadcasting transactions

Transactions

Тх	From	Amount (€)	То
1	#9	1,-	#4
2	#8	2,-	#10
3	#1	9,-	#5
4	#7	5,-	#2
5	#8	4,-	#3
6	#4	8,-	#6

A block in the blockchain

Тх	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
1.1				+1					-1	
1.2								-2		+2
1.3	-9				+9					
1.4		+5					-5			
1.5			+4					-4		
1.6				-8		+8				

Mining serves to make a block immutable by cryptographically sealing it

Mining

- By mining a block of transactions it is made sure that the block, after it has been written to the blockchain, cannot be changed anymore
- Mining uses hashing
- Hashing is a one-way function: a certain input leads to a certain output, but it is impossible to calculate the input from the output

Example: hashing

1. Take the identification number

RABO 0123456789

2. Add the country code

RABO 0123456789 NL

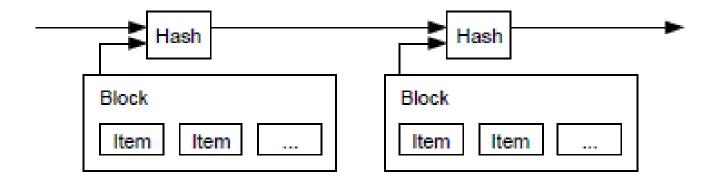
3. Replace the letters by their number in the alphabet +9 (A=10; B=11;...; Z=35)

RABO 0123456789 NL becomes 2710112401234567892321

4. Add two zeros

271011240123456789232100

- 5. Calculate **g mod p** with g=271011240123456789232100 and p=97, this gives 54
- 6. Subtract this number from 98


98-54=44 [will always be in the range 1-98]

7. This is the check sum (in the form of a hash)

The IBAN number is: NL44RABO0123456789

http://www.xorbin.com/tools/sha256-hash-calculator

Hashes form the chain

Hashing in the blockchain

Тх	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Bb	10	10	10	10	10	10	10	10	10	10
1.1				+1					-1	
1.2								-2		+2
1.3	-9				+9					
1.4		+5					-5			
1.5			+4					-4		
1.6				-8		+8				
Eb	1	15	14	3	19	18	5	4	9	12

b39667cf64cd5bc6cd7adbfc711cd8446036f9144c1cceb604897b0e824a027d

Hash1 = f(T1.1-T1.6, nonce) = 7dc0b

hash of all the transactions in this block

<u>n</u>umber used <u>once</u>

The next block

Тх	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Bb	1	15	14	3	19	18	5	4	9	12
2.1	+7		-7							
2.2					+16	-16				
2.3								+2	-2	
2.4	+3			-3						
Eb	11	15	7	0	35	2	5	6	7	12

Hash2 = f(T2.1-T2.4, hash1, nonce) Hash2 = f(19efe, 7dc0b, 35ea2) = f3e44

And another one

Тх	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Bb	11	15	7	0	35	2	5	6	7	12
3.1	+2					-2				
3.2				+8						-8
Eb	13	15	7	8	35	0	5	4	9	4

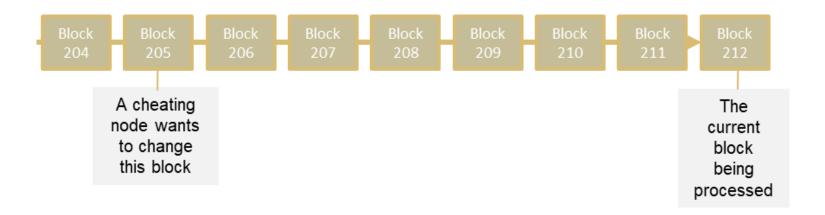
Hash3 = f(T3.1-T3.2, hash2, nonce) Hash3 = f(abdf7, f3e44, 41e69) = cbc39

And so on ...

Proof-of-work

- Writing a block of valid transactions to the blockchain can only be done after proof-ofwork allows a node to do so
- The incentive to provide proof-of-work is a prize of 12,5 BTC + some transaction fees
- The prize goes to the node that finds such a nonce that combined with the hash of the previous block, and the hash of all the transactions in the current block gives a hash that is smaller than the (system provided) target hash

Finding the nonce that gives a hash smaller than the target hash can only be done through trial and error (billions of trials)



Checking if a certain number indeed gives a hash smaller than the target hash is a simple calculation

Data quality

- Changing a transaction in a mined block requires redoing the proof-of-work
- The more blocks are mined after the block that contains the transaction a fraudster wants to change the more difficult it is to redo the proof-of-work
- After 6 blocks it is not just difficult, it is <u>impossible</u> to change a transaction in a mined block
- That is why a blockchain is immutable and as a result leads to highly reliable information

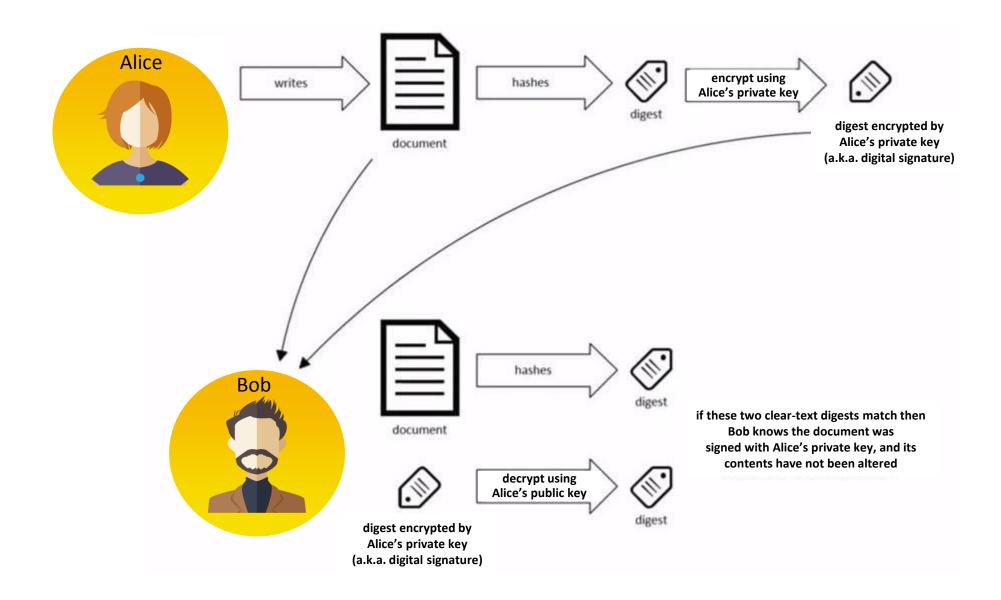
Ownership and provenance

- Tokens are the cryptographic representation of (digital or physical) assets
- When in the real world an asset moves from A to B, in the blockchain the token also moves from A to B
- Provenance and ownership can always be determined
- That is why a blockchain can help safeguarding assets

Smart contracts

- Merely pieces of software that execute pre-programmed actions if certain conditions are met
- Can run on a blockchain
- Unstoppable
- Compliance by default
- That is why a blockchain can enforce compliance with applicable laws and regulations

Disintermediation


- The trust protocol replaces a trusted third party
- So, disintermediation
- No man-made delays or mistakes
- That is why a blockchain makes interactions between members of ecosystems more efficient and effective

Blocks are cryptographically linked

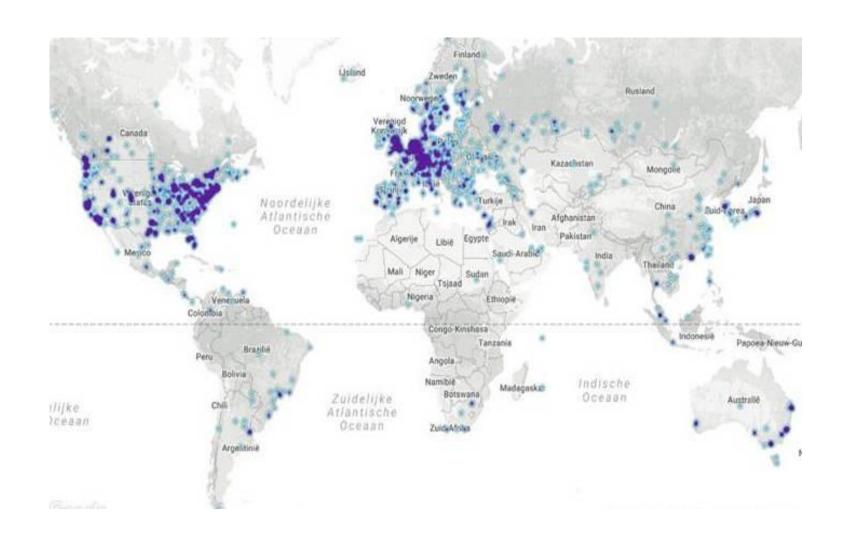
Digital signatures (1)

- A digital signature is a mathematical scheme for presenting the authenticity of digital messages or documents
- A valid digital signature gives a recipient reason to believe:
 - that the message was created by a known sender (authentication)
 - that the sender cannot deny having sent the message (non-repudiation)
 - that the message was not altered in transit (integrity)
- Digital signatures are added to the digital message or document using private and public keys

Digital signatures (2)

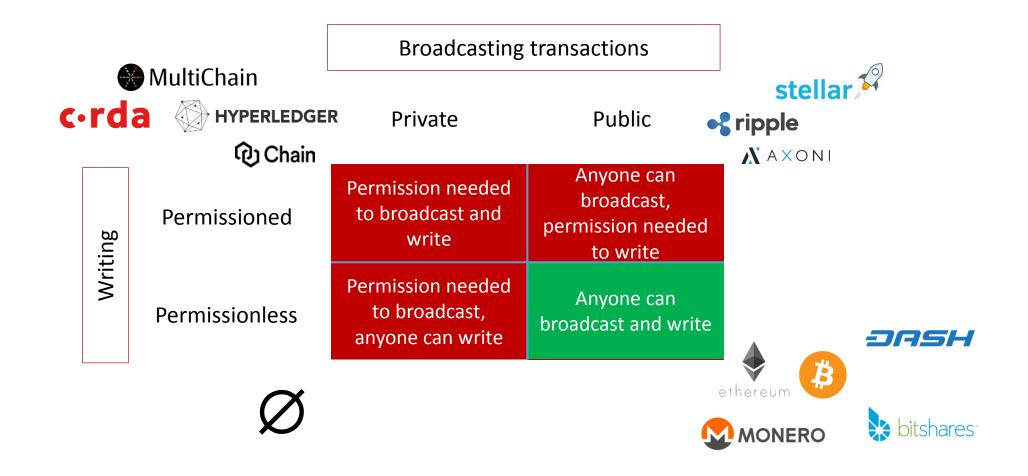
An electronic coin is a chain of digital signatures

Important conditions for blockchain


- 1. Shared database
- 2. Multiple parties who write data to the shared database
- 3. Those parties are members of different legal or economical entities
- 4. No or limited trust between these parties
- 5. No trusted third party possible or desired

Mining farms

A mining farm is a mining node ('miner') that has as its business model expending hashing power to find a nonce that gives a hash that is smaller than the target hash


Nodes are all over the world

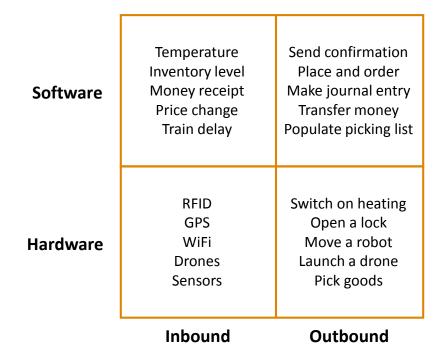
Reachable nodes as of Sat Apr 28 2018

RANK	COUNTRY	NODES
1	<u>United States</u>	2570 (24.43%)
2	Germany	2041 (19.40%)
3	China	732 (6.96%)
4	<u>France</u>	683 (6.49%)
5	<u>Netherlands</u>	488 (4.64%)
6	United Kingdom	395 (3.76%)
7	<u>Canada</u>	391 (3.72%)
8	Russian Federation	349 (3.32%)
9	<u>n/a</u>	328 (3.12%)
10	<u>Japan</u>	230 (2.19%)
	Total	10519 (100%)

Distributed ledgers

Ethereum

- Ethereum is a decentralized platform for building smart contracts
- These smart contracts run on a blockchain
- Smart contracts can be used for creating markets, registries of debts or obligations, move funds according to instructions that were given in the past (such as in a will or futures contract), or any other application that involves the transfer of physical or virtual assets (including information)
- Ethereum can be considered a platform as a service (PaaS)
- The cryptocurrency is Ether
- The programming language is Solidity



Oracles

- An oracle is a tool for making data outside a blockchain network available for that blockchain
- This data triggers smart contract execution when pre-defined conditions (e.g., outside temperature, order receipt, successful payment, a price change) are met

Types of oracle

Use cases

Use case	Reliability	Safeguarding	Compliance	Efficiency & effectiveness
Land registry	V	V		V
Tickets			V	V
Elections	V		V	V
Track and trace in supply chains		V		V
Electronic markets	V	V		V
Intellectual rights management	V	V	V	V
Licenses			V	V
Personal credentials for job applications	V			V
Zero knowledge range proof for privacy	V		V	V
Liquid assets swapping at banks	V	V		V
Energy exchange		V		V
Triple-entry accounting	V			V

The language of blockchain

- Hashing
- Public and private keys
- Digital signatures
- Distributed ledgers
- Mining
- Nodes
- Smart contracts
- Proof-of-work
- Trust protocol
- Peer-to-peer network
- Open source protocol
- Shared single-source-of-truth
- Tokenization
- Oracles

Takeaways

- Distributed ledger technology (DLT) is the versatile variant of blockchain technology
- Through its versatility DLT has great potential in management, control, audit, finance and oversight regarding the following objectives:
 - Information reliability (for example 'triple-entry accounting')
 - Safeguarding of assets (for example 'supply chains')
 - Compliance with applicable laws and regulations (for example 'privacy')
 - More efficient and effective interactions between members of ecosystems (for example 'energy')
- Each user must have a basic understanding of the language of DLT (distributed, mining, hashing, cryptography, smart contracts) to meaningfully and safely interact with the distributed ledger